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ABSTRACT: The copolymerization of styrene and n-butyl acrylate in dioxane was
monitored by on-line Raman spectroscopy. The calculation of the individual monomer
concentrations on the basis of the individual vinyl peaks is not straightforward for this
system, as these bands are overlapping in the Raman spectrum. To tackle this problem,
univariate and multivariate approaches were followed to obtain monomer concentra-
tions and the results were validated by reference gas chromatography data. In the
univariate analysis, linear relations between various monomer peaks were used to
calculate monomer concentrations from the Raman data. In principal component anal-
ysis, the main variation in the spectra could be ascribed to conversion of monomer.
Furthermore, principal component analysis pointed out that the second-largest effect in
the spectra could be attributed to experiment-to-experiment variation, probably attrib-
utable to instrumental factors. In the multivariate partial least squares regression
approach, single factor models were used to calculate monomer concentrations. Both
the univariate and the partial least squares regression approaches proved successful in
calculating the individual monomer concentrations, showing very good agreement with
off-line gas chromatography data. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79:
426–436, 2001
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INTRODUCTION

In copolymerization processes, the final product
properties of the copolymer strongly depend on
the chemical composition distribution.1 The com-
position of the instantaneously formed copolymer,

in turn, depends on the comonomer concentra-
tion, and this relation is usually well described by
the ultimate copolymerization model.2 As a con-
sequence, controlling copolymer composition can
be achieved by controlling the comonomer compo-
sition. Hence, information on comonomer concen-
tration is of major importance, and this can be
achieved in several ways: 1. by measuring all
monomer concentrations directly by, e.g., gas
chromatography (GC)3 or spectroscopic tech-
niques4,5; 2. by measuring the overall conversion
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by, e.g., densitometry,6 ultrasound methods,7 or
calorimetry8 in conjunction with a model such as
the Mayo-Lewis equation2 to calculate the compo-
sition of the comonomer mixture; and 3. by open-
loop strategies,9 in which control is based on a
theoretical model without monitoring the reac-
tion.

Disadvantages of using the latter two tech-
niques is that these methods are model depen-
dent and, in addition, the third approach is insen-
sitive to disturbances of the process by, e.g., con-
tamination of the reactor by inhibiting species
such as oxygen, or inaccuracy of the feed pumps.

A promising method for monitoring monomer
concentrations is Raman spectroscopy. The tech-
nique has been applied in bulk,10 solution,11

emulsion,12–18 and suspension19 polymerizations.
The technique is especially promising for emul-
sion and suspension polymerizations because
transparency is not required because Raman
spectroscopy is a scattering technique. Further-
more, water is only a weak scatterer, not obscur-
ing the spectrum. In addition, the application of
fiber optics13,14 is readily possible because light in
the visible or near infrared light region can be
used, offering opportunities for remote, in situ
monitoring.20

In the literature, a few studies have been re-
ported in which Raman spectroscopy is used for
determining monomer concentrations in copoly-
merizations.21–23 Bowley et al.21 studied the copo-
lymerization of styrene and methyl methacrylate
and applied Fourier self-deconvolution to obtain
the relative vinyl bands. They claimed that this
approach was successful, although they did not
give any details or show validation of the results.

Haigh et al.22 studied the copolymerization of
styrene with vinyl imidazole to estimate reactiv-
ity ratios. The emulsion copolymerization of sty-
rene and butyl acrylate has previously been stud-
ied by Raman spectroscopy by Al-Khanbashi et
al.23 In this study, a univariate approach was
used to calculate monomer concentrations.

The goal of the present report is to compare the
accuracy of univariate and multivariate tech-
niques, focusing on the calculation of the individ-
ual monomer concentrations of butyl acrylate and
styrene. Because Raman spectroscopy is a scat-
tering technique, concentrations cannot be calcu-
lated from absolute intensities because of varia-
tions in, e.g., optical alignment or sampling vol-
ume, and spectra need to be normalized.24 For
this reason, we have chosen to work with solution
polymerizations. The advantage of studying solu-

tion polymerizations is that a solvent peak can be
used as an internal standard. In this way, the
problems related to normalization of the spectra
or assuming constant monomer bands are
avoided.

Styrene and butyl acrylate have vinyl bands
with Raman shifts of 1631 cm21 and 1635 cm21,
respectively.25,26 As a result, the individual mono-
mer peaks are strongly overlapping and the area
of the resulting vinyl peak cannot be related to
individual monomer concentrations. In the mul-
tivariate approach,27 the full spectrum can be
used, and changes in the spectrum are correlated
to changes in monomer concentrations. Therefore,
a calibration set is required to predict monomer
concentrations in unknown samples. For this rea-
son, off-line samples were taken and analyzed by
GC.

In the univariate approach, results from the
homopolymerizations are used to calculate mono-
mer concentrations from the copolymerization
Raman data, by using relations between various
bands in the Raman spectrum.

EXPERIMENTAL

Materials

The monomers, styrene (Sty, .99%; Merck, The
Netherlands) and butyl acrylate (BA, .99%;
Merck) were purified from inhibitor (t-butylcat-
echol and hydroquinone, respectively) by passing
them over an inhibitor-removing column (Dehibit
200; PolySciences). Dioxane (Merck, p.a.) and
a-a9-azobis-isobutyronitrile (AIBN; Fluka, The
Netherlands) were used as received.

Setup

Raman spectra were recorded with a Labram
spectrometer (Dilor S.A., France). A Spectra
Physics Millenium II Nd:YVO4 laser, operated at
532 nm, was used as an excitation source. The
initial laser power was 0.40 W, which resulted in
approximately 0.15 W at the sample. Spectra
were taken in situ from a 0.3-L glass reactor with
a heating jacket for controlling temperature. Ra-
man spectra were acquired through a single wall
glass window. The optical head (Superhead, Dilor
S.A.) was placed in front of this window and was
connected to the spectrometer using 10 m of opti-
cal fiber, as shown in Figure 1. The spectrometer
was equipped with an 1800 grooves/mm grating
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and a charge-coupled device, resulting in a reso-
lution of 0.045 nm (approximately 1.5 cm21).

Off-line samples (approximately 1 mL) were
diluted in tetrahydrofurane and analyzed by GC.
The HP 5890 gas chromatograph was equipped
with an autosampler and Alltech AT-wax column
(length, 30 m; film thickness, 1.0 mm). Table I
gives the recipes for the various reactions and
conditions for the measurements. Polymeriza-
tions were performed under an argon atmosphere
by maintaining a mild argon flow (,2 mL/min) at
60°C, while the reaction medium was mixed using
a magnetic stirrer.

Before analyzing the Raman data, spectra
were subsequently smoothed, baseline corrected,
and normalized. Smoothing was performed by ap-
plying a seven-points Savitsky-Golay filter twice.
The spectra were baseline corrected either by a
polynomial spline for the complete spectrum, or
by linear interpolation for small regions. The nor-
malization was accomplished by dividing the in-

dividual intensities after smoothing and baseline
correction by the integrated area of the ring-
breathing band of dioxane28 from 800–880 cm21.

Principal component analysis (PCA) and par-
tial least squares regression (PLSR) were per-
formed using commercial software (The Unscram-
bler 6, Camo A.S., Norway).

RESULTS AND DISCUSSION

Homopolymerizations

Figures 2 and 3 show some spectra which were
obtained during the polymerizations of Sty and
BA (HSty and HBA), respectively. Both Figures
show that, during polymerization, the solvent
peaks remain constant (e.g., peaks at 830, 1030,
and 1430 cm21), whereas the intensity of the
monomer peaks decrease during polymerization.
In Figure 2, for example, the aromatic peaks at
1600 and 1000 cm21 decrease with increasing
conversion. In Figure 3, the peak with most pro-
nounced decrease besides the vinyl peak in the

Figure 1 Schematic set-up of the on-line Raman
equipment.

Table I Recipes for the Various Reactions

Reaction
Initiator

(g)
Styrene

(g)
BA
(g)

Dioxane
(g)

tacq

(s)
Alternative
Technique

C1 0.23 37.43 87.42 132.00 60 GC
C2 2.05 37.93 88.36 131.92 60 GC
C3 1.65 37.60 87.71 132.112 60 GC
HSty 0.99 59.52 0 187.91 60 Grav.
HBA 0.22 0 99.10 151.52 15 Grav.

Figure 2 Some smoothed, normalized spectra from
the homopolymerization of styrene at 0, 20, 40, and
60% conversion.

428 VAN DEN BRINK ET AL.



polymerization of BA, is the carbonyl band near
1730 cm21. It has previously been shown that for
the polymerization of methyl methacrylate, the
carbonyl band can be used for monitoring conver-
sion.11

Figure 4 shows that the intensities of the aro-
matic and carbonyl bands mentioned above de-
crease linearly with increasing conversion. In this
Figure, conversion is calculated according to the
normalized area of the decreasing vinyl band. Us-
ing these linear relations, it is possible to calcu-
late conversion according to eq. (1):

X~i! 5

1 2
A~i!
A~0!

K (1)

where X(i) stands for the conversion correspond-
ing to spectrum i, A(i)/A(0) for the relative area
(or intensity) of the peak of interest for spectrum
i relative to the initial area, whereas K is obtained
from the linear fit (in all cases R2 . 0.999). Table
II shows some values for K obtained from poly-
merizations B1 and B2.

The results obtained in this study contrast
with those from a previous study on the system of
styrene and butyl acrylate by Al-Khanbashi et
al.23 In their study, it was assumed that the aro-
matic ring-breathing band for styrene at 1000
cm21 remained constant during polymerization.
Next, they calculated the styrene conversion us-
ing the olefinic CH deformation band at 1412
cm21 (see Fig. 2), assuming no contribution from
BA in this region. The BA concentration was sub-
sequently calculated from the BA vinyl area,
which was obtained by subtracting the estimated
styrene vinyl area, calculated from the styrene
conversion data, from the total vinyl area.

Our results, however, indicate that the inten-
sity of the aromatic ring-breathing mode de-
creases with conversion, as shown in Figures 2
and 4. The same decrease was previously ob-
served during the bulk polymerization of sty-
rene.25 Therefore, the assumption that the ring-
breathing mode remains constant,23 seems incor-
rect. Furthermore, Figure 3 shows that BA also
displays a peak near 1412 cm21, disappearing
with increasing conversion, implying that during
the copolymerization of Sty and BA, the peak at
1412 cm21 cannot be ascribed to Sty alone.

Copolymerizations

Figure 5 shows the amounts of monomer in the
reactor versus time, whereas Figure 6 shows the
monomer fraction versus conversion for the mono-
mer concentrations as obtained by GC. The dif-
ference in conversion-time behavior (see Fig. 5)
can be accounted for by the varying initiator con-
centrations. However, Figure 6 shows that the
three copolymerizations are identical, because all

Figure 3 Some smoothed, normalized spectra from
the homopolymerization of BA (HBA) at 0, 50, 70, and
85% conversion.

Figure 4 Relative peak areas [A(i)/A(0)] as a function
of conversion for the solution polymerizations of Sty
and BA.

Table II K Values Obtained from the Solution
Polymerizations of Styrene and Butyl Acrylate

Monomer Region (cm21) K

Styrene 990–1010 0.3518
Styrene 1600 0.8513
Butyl acrylate 1680–1760 0.6725
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GC data are well fitted,29 using only one pair of
reactivity ratios (rSty 5 0.80 and rBA 5 0.23). In
other words, reactions C1–C3 are going through
the same states in terms of composition, although
the time at which a certain state is reached differs
from reaction to reaction.

Figure 7 shows some of the spectra obtained
during copolymerization reaction C2 and similar
spectra were obtained from reactions C1 and C3.
The Figure shows that, although these are lower
concentrations of Sty compared with BA, spectra
are dominated by Sty and the solvent.

Univariate Analysis

The values for K as presented in Table II can be
used to estimate partial conversions and from
these the monomer concentrations. These mono-

mer concentrations can then be compared with
the GC results. This comparison is shown in Fig-
ure 8, displaying the amounts of BA and Sty
versus time for reaction C2. It can be seen that
the GC and Raman results are in good agreement.
Figure 9 compares the results of the Raman data
with the corresponding GC data for reactions C1–
C3, where “measured” refers to the monomer con-
centrations measured by GC and “predicted” to
the monomer concentrations calculated from the
Raman data. Figures 8 and 9 clearly demonstrate
that, using the univariate approach, monomer
concentrations can be calculated successfully.

Multivariate Analysis

PCA

PCA was performed on the spectra from C1–C3
for which the monomer concentrations were ana-

Figure 5 Styrene (filled symbols) and butyl acrylate
(open symbols) as a function of time. E, C1; ‚, C2; h,
C3.

Figure 6 Conversion versus monomer fraction. E,
C1; ‚, C2; h, C3, , model prediction (rSty 5 0.8,
rBA 5 0.23).

Figure 7 Some smoothed, normalized spectra from
the copolymerization of Sty and BA (C2).

Figure 8 Monomer content as a function of time. E,
BA; ‚, Sty. Open symbols, Raman data; closed symbols,
GC data.
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lyzed using GC. PCA is a powerful mathematical
technique for studying spectral variations in a
data set. In PCA, the spectrum is decomposed in
scores and loading vectors, according to:

x 5 t1 z p1 1 t2 z p2 1 · · · 1 tn z pn 5 @t1 . . . tn#

3 F p1···pn

G 5 tTP (2)

where x represents the spectrum, p1 the first
loading vector, and t1 the score belonging to the
first loading vector. The maximum number of
components possible, n, equals the number of
spectra in the complete set. However, usually
most of the spectral variation is described by the
first few components, whereas the higher loading
vectors represent mainly noise in the spectra. To
study the variation in the spectral set, only the
first loading vectors and the accompanying scores
need to be taken into account. The loading vec-
tors, also called principal components (PCs), can
be regarded as the “building blocks” and the
scores as “the number of building blocks” needed
to reconstruct a spectrum. Thus, the same “build-
ing blocks” are used for all the spectra in the set,
whereas the number of blocks varies from spec-
trum to spectrum or, associated to the spectra,
from sample to sample. Therefore, within a set, a
sample is characterized by its scores, whereas the
set as a whole is characterized by its loading
vectors. PCA is described in great detail in Mar-
tens and Næs.27

Before PCA, all spectra were smoothed, nor-
malized, and baseline corrected as described in
the previous section. In addition, spectra were
mean-centered by subtraction of the average
spectrum, calculated from the complete data set.
In this way, the results are interpreted as varia-
tions around the mean. PCA was performed on all
Raman spectra for which a corresponding GC
sample was taken, giving a total of 37 spectra in
the set. Figure 10 shows the explained variance
versus the number of PCs. The explained vari-
ance indicated here as a percentage, is a measure
of the proportion of variation in the data ac-
counted for by the current PC. Figure 10 shows
that by using 1 PC, 98% of the spectral variation
is accounted for, whereas two PCs account for
99.5% of the spectral variation. Figure 11, depict-
ing loading vectors 1 to 5, also shows that the
noise in the loading vectors increases with in-
creasing number of components.

In addition, Figure 11 shows that the peaks for
styrene are most prominently present in the first
loading, whereas BA is only visible in this loading
by the small peak in the area of the carbonyl peak
(1730 cm21). Furthermore, in the first loading,

Figure 9 (a) Predicted versus measured styrene con-
centrations for univariate analysis. E, C1; ‚, C2; h, C3.
(b) Predicted versus measured butyl acrylate concen-
trations for univariate analysis. E, C1; ‚, C2; h, C3.
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the solvent peaks are virtually absent, although
they are clearly present in the spectra (cf. Fig. 8).
In the second loading, the most prominent peak
coincides with the solvent band near 830 cm21.
Looking more closely at Figure 11, it seems that
the second loading is a “derivative” of the original
spectrum. The derivative-like appearance of a
loading often indicates a peak shift, rather than
an effect in composition. This effect may be
caused by a variation from experiment to experi-
ment. The scoreplot corroborates this supposition.
Figure 12 shows the scores along PC2 versus the
scores along PC1 for the samples in the set. The
numbers denote the sample number, 1–12 for C1,
13–24 for C2, and 25–37 for C3, the numbers
increasing with conversion. It seems that PC1 is
mainly related to conversion; with increasing con-

version, the scores on PC1 decreases, whereas the
main variation in PC2 seems to be the experiment
from which the sample is taken, rather than the
small effect which seems to be caused by conver-
sion.

The origin of this variation may be in instru-
mental (hardware) factors, or attributable to pre-
treatment of the spectra (software factors). How-
ever, all spectra were treated using the same
Savitsky-Golay filter and the same baseline cor-
rection. Taking derivatives instead of a baseline
correction did not markedly change the score
plots. Also, PCA was performed on spectra that
were not normalized. In this case, a higher factor
model was required to describe the variation in
the data and the experiment-to-experiment vari-
ation being also present in the first factor (not
shown). Thus, software factors seem unlikely to
account for the variation.

Instrumental variance does not seem unrea-
sonable, as the alignment of the spectrometer
changes from experiment to experiment. The
spectrometer is equipped with an adjustable grat-
ing, which may be the origin of the shifts. In
calibrating the system, the grating is turned to a
different position, and later turned back to ap-
proximately the same position as in previous ex-
periments. However, we have found that it is
virtually impossible to turn the grating back to
exactly the same position, and variations (shifts)
of around 1 cm21 are encountered. In addition,
small variations in the laser frequency may give
the same effect. However, in calibrating the sys-
tem, the laser frequency is taken as 0 cm21 Ra-
man shift and a distinction between these two

Figure 10 Explained variance as a function of the
number of components for PCA on the full spectrum for
C1–C3.

Figure 11 First five loadings for the PCA on C1–C3
for the full spectrum.

Figure 12 Scoreplot for the complete calibration set
resulting from PCA on the full spectrum (450–1850
cm21).
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effects is difficult. Reactions C2 and C3 have been
performed on subsequent days, whereas reaction
C1 was performed 4 weeks earlier. As a conse-
quence, between reactions C1 and C2, the grating
was repositioned, whereas it was not between C2
and C3. In between all reactions, the laser was
shut off and on again. These operations may be
the cause of experiment-to-experiment variation.

The conclusion is that, in the spectra, the main
variation is given by converting monomer to poly-
mer, and a second effect is present because of
experiment-to-experiment variation, which can-
not be ascribed to the reaction itself. This second
effect is smaller than the first, though clearly
present in the PCA. Adaptive calibration mod-
els30 may be able to correct for these small peak
shifts. The observation that only one factor de-
scribes variations attributed to polymerization co-
incides with the linear relationships between the
vinyl and other bands.

PLSR

PLSR resembles PCA. The main difference is that
PLSR is a regression technique, requiring a cali-
bration step and therefore calibration samples,
whereas PCA does not require this. As in PCA, in
PLSR, spectra are “reconstructed,” similar to eq.
(2). In PLSR, in contrast with PCA, the loading
vectors and scores are determined by regressing
the variation in the spectra to the variation in the
samples. A detailed description of PLSR can be
found in the literature.27

As in any calibration, the samples in the cali-
bration set should represent the full range of con-
ditions encountered during the reaction. As dis-
cussed previously, reactions C1–C3 are identical,

and for this reason each of these reactions can
serve as the calibration set for calculating concen-
trations obtained from the other reaction.

PLSR Calibration

PLSR was performed on various parts of the spec-
trum, for both Sty and BA, for all samples (C1–
C3) and the individual sets. Table III shows the
results for the various calibration models that
were constructed. The calibration models were
validated by a full cross validation.27 The quality
of the models is expressed by sp, the root mean
squared error of prediction, given by the weighted
squared residual between the predicted concen-
tration by the model and the concentration as
measured by GC.31 A low value for sp indicates a
high accuracy in the prediction of the monomer
concentration and is expressed in grams of mono-
mer per gram of solvent.

Table III shows that, in all cases, the styrene
concentration is predicted using single factor
models. This is probably because variations in the
spectrum are dominated by styrene. Oddly, even
the carbonyl area results in a single factor model
for styrene, although this monomer shows no
bands in this region. However, the high value for
sp indicates that the prediction is not very accu-
rate and indeed there is a significant difference
between the measured and predicted values. The
fact that a prediction can still be made is due to
the co-linearity in the BA and Sty concentrations;
a decreasing concentration of one monomer is al-
ways accompanied by a decrease in the other,
whereas the difference between the actual and
calculated data describes the deviation from lin-

Table III Results for Calibration Models (PLSR)

Sample
Set

Region
(cm21) Assignment

#PC
(Sty)

sp (Sty)
3103

#PC
(BA)

sp (BA)
3103

1 All 450–1850 Full spectrum 1 8.12 3 1.43
2 C1 450–1850 Full spectrum 1 12.1 3 26.2
3 C2 450–1850 Full spectrum 1 3.49 2 3.44
4 C3 450–1850 Full spectrum 1 2.69 2 4.53
5 C3 1690–1760 CAO 1 23.2 1 4.82
6 C3 1550–1680 CAC 1 2.81 2 4.71
7 C3 1390–1530 ACH 1 4.09 3 6.69
8 C3 1140–1370 OCH 1 2.97 2 8.609
9 C3 930–1040 Aromatic 1 2.96 3 21.0
10 C3 450–880 1 3.05 2 14.9

#PC, number of factors used in the model; sp, root mean squared error of prediction.
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ear behavior in the decreasing comonomer con-
centrations.

For BA, two to three factor calibration models
are required, except for the carbonyl area in
which a single factor suffices. The two to three
factor models are, again, probably due to the co-
linearity in the Sty and BA concentration. The
first factor gives the main variation due to sty-
rene, whereas higher factors describe the devia-
tion from linearity. Note that, in regions where
much more Sty is present than BA, the number of
factors is at least two, whereas if BA is virtually
absent (e.g., the aromatic region around 1000
cm21), a three-factor model is required. In the
case of the carbonyl region (around 1730 cm21), a
single factor gives good predictions, as in this case
no co-linearity resulting from the styrene can be
expected.

PLSR Prediction

Using the calibration models from the previous
section, concentrations for Sty and BA for one
reaction can be calculated using the calibration
model from another; i.e., concentrations from C1
can be calculated using the calibration models
constructed from reaction C2 and/or C3, and vice
versa. The BA concentrations were calculated us-
ing calibration models based on the carbonyl area
for sets C1–C3 (cf. set 5, Table III). The results
are shown in Figure 13 where the results for C1,

C2, and C3 are shown as predicted versus mea-
sured plots. The line represents the “ideal case,”
where the predicted (Raman) values equal the
measured (GC) values. It can be seen that in all
cases, accurate predictions are obtained. This is
also shown in Table IV, giving the standard devi-
ations in the BA concentrations (sBA). Table IV
and Figure 13 show that, when C1 is used in the
calibration model, a lower precision in the results
is obtained. This is probably because of the lower
precision from the GC results. C2 and C3 show
approximately the same precision.

Obviously, the best predictions are obtained
when calculating concentrations within calibra-
tion set.

The results shown for the predictions are only
for BA. The results for Sty gave lower values for
sSty, compared with sBA, indicating higher preci-
sion. This was expected because of the values for
sp for calibration sets 6, 8, or 9 in Table III.

Univariate Predictions Versus Multivariate
Predictions

Comparing the univariate and PLSR predictions
for BA in Figures 9(b) and 13, and Tables IV and
V, it can be seen that the PLSR results yield a
little higher precision. However, the quality of the

Figure 13 Measured concentrations versus the pre-
dicted concentrations for BA. , exact match; E, C1
for calibration; ‚, C2 for calibration; h, C3 for calibra-
tion.

Table IV Standard Deviations sBA for BA for
the Individual Data Sets (Columns) for
Different Calibration Sets (Rows)

Prediction 3 C1 C2 C3

Calibration 2 sBA (3103) sBA (3103) sBA (3103)

C1 9.02 41.4 22.9
C2 22.1 2.25 8.2
C3 16.2 11.9 3.23

Calibration is performed by PLS1 on the CO peak (1680–
1760 cm21).

Table V Standard Deviations Using Reaction
B2 for Calibration

Univariate
(sBA 3 103)

PLSR
(sBA 3 103)

C1 17.5 29.6
C2 13.7 37.9
C3 6.7 26.3

sBA expressed in g monomer/g solvent.
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PLSR predictions depends strongly on the quality
of the calibration model, which hampers the ro-
bustness of this technique. In the case presented
herein, the accuracy of PLSR seems to be limited
by instrumental factors. Whether this limitation
in precision is disturbing depends on the con-
straints of, e.g., a controller model. Furthermore,
it should be noted that the sets C1–C3 are very
similar. Greater variation between the prediction
and calibration may decrease accuracy. There-
fore, the PLSR results presented herein can be
regarded as almost “ideal,” given that instrumen-
tal variation cannot be avoided and variations in
experimental conditions can only increase.

The univariate prediction, on the other hand,
seems more robust in this respect, because the
requirements for the calibration set are less
strict. Additionally, as integrated peak areas are
used, this approach seems less sensitive to instru-
mental variation.

As briefly mentioned previously, in the compar-
ison of the univariate method and the multivari-
ate approach, different sets were used for calibra-
tion. To use the homopolymerization of BA for a
multivariate prediction, a PLSR model was devel-
oped, which is able to predict (partial) conversions
of BA. From the partial conversions and the ini-
tial concentration of BA, the actual concentra-
tions of BA can be calculated. The results of these
PLSR predictions can be compared with univari-
ate predictions using the same calibration set. To
do so, spectra for both the homo- and copolymer-
ization in the carbonyl region of 1690 to 1760
cm21 were scaled to the spectrum at zero conver-
sion, according to the following equation:

Ic~i, j! 5
Ib~i, j!
A~0!

(3)

where Ib(i,j) and Ic(i,j) refer to the baseline cor-
rected and the zero-conversion scaled intensity at
wavelength j for spectrum i, respectively, and
A(0) refers to the area under the carbonyl peak at
zero conversion. Figure 14 shows the predicted
versus measured plots using this PLSR model,
whereas Table V shows the standard deviations
in the BA concentration for both methods. These
results show that this PLSR gives reasonable pre-
dictions for the BA concentration, although the
accuracy is lower than those obtained in the uni-
variate experiments, whereas the precision is ap-
proximately the same. The reason for this may be
twofold: in the calibration set, a homopolymeriza-

tion was used, whereas the predicted values are
from a copolymerization. The overall carbonyl
band is the result of the carbonyl contributions
from both monomer and (co)polymer, and as a
result of a different copolymer composition, the
shape of the CO band may change slightly. An-
other reason may be, as mentioned before, a dif-
ference in experimental or instrumental condi-
tions.

Thus, a simple answer cannot be given to the
question whether the multivariate technique is
preferred over the univariate technique. If consid-
erable variation in the instrument and/or experi-
mental conditions is anticipated, the univariate
approach may be the method of choice. However,
if instrumental variation is small, and experi-
mental conditions are well within defined limits,
the multivariate approach is preferred.

CONCLUSIONS

The copolymerization of styrene and butyl acry-
late in dioxane was monitored by on-line Raman
spectroscopy. It was shown that both univariate
and multivariate techniques can be used for an
accurate prediction of the monomer concentra-
tions. After normalizing to a solvent peak, single
factor models are obtained in PLSR. In principle,
the multivariate approach gives the highest pre-

Figure 14 Predicted concentration of BA versus mea-
sured concentration of BA using results from B2 for
calibration. E, C1; ‚, C2; h, C3.
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cision. The univariate method, on the other hand,
gives more robust models, which can be used in a
wide(r) range of monomer concentrations. Both
PCA and PLSR indicate that the accuracy of
PLSR is limited by the instrumental variation. In
this work, only simple data preprocessing tech-
niques have been applied to improve the robust-
ness of the model. Nevertheless, univariate as
well as multivariate approaches can be applied
successfully in the calculation of monomer con-
centrations during copolymerization reactions, of-
fering possibilities for on-line control of copoly-
merization reactions using Raman spectroscopy
as the instrument for obtaining monomer concen-
trations.
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